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Vandœuvre lès Nancy Cedex, France
2 Institut für Theoretische Physik I, Universität Erlangen-Nürnberg, Staudtstraße 7B3, D-91058
Erlangen, Germany

Received 18 December 2004, in final form 10 January 2005
Published 6 May 2005
Online at stacks.iop.org/JPhysCM/17/S1899

Abstract
The frequency-dependent scaling of the dispersive and dissipative parts of the
alternating susceptibility is studied for spin glasses at criticality. An extension of
the usualωt-scaling is proposed. Simulational data from the three-dimensional
Ising spin glass agree with this new scaling form and moreover reproduce well
the scaling functions explicitly calculated for systems satisfying local scale
invariance. There is also a qualitative agreement with existing experimental
data.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Understanding the complex behaviour of glass-forming systems cooled to below their glass
transition temperature remains a challenge. At first sight, the problem might appear to be
hopelessly difficult, since time-translation invariance is in general broken and the properties
of observables may hence depend on the prehistory of the material under study (i.e. thermal,
mechanical, . . .). On the other hand, an important discovery has been the observation of
dynamical scaling, see [1], which occurs quite independently of whether the equilibrium state
is critical or not. In recent years, it has been realized that many aspects of dynamical scaling
are conveniently first studied in non-disordered, i.e. ferromagnetic systems. After a quench
to or to below their critical temperature Tc, these systems undergo an ageing behaviour which
in many respects is quite similar to the one in glassy or kinetically constrained systems. The
manifold problems which arise in the study of ageing in simple magnets or glasses are reviewed,
e.g., in [2–9].
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For notational simplicity, we shall in what follows consider magnetic spin systems.
Convenient tools for the study of ageing behaviour are the two-time autocorrelation and
autoresponse functions

C(t, s) = 〈φ(t)φ(s)〉 ∼ s−b fC(t/s) (1)

R(t, s) = δ〈φ(t)〉
δh(s)

∣
∣
∣
∣
h=0

∼ s−1−a fR(t/s) (2)

where φ(t) is the order parameter at time t and h(s) is the conjugate magnetic field at time s.
The scaling behaviour is expected to apply in the so-called ageing regime where t, s � tmicro

and t − s � tmicro, where tmicro is a microscopic timescale. Furthermore, we tacitly assumed
that the scaling derives from the time dependence of a single characteristic length scale L(t)
which measures the linear size of correlated clusters. In this paper, we shall always consider
algebraic growth laws, namely L(t) ∼ t1/z , where z is the dynamic exponent. Then the above
forms define the nonequilibrium exponents a and b and the scaling functions fC(y) and fR(y).
For large arguments y → ∞, one generically expects

fC (y) ∼ y−λC/z, fR(y) ∼ y−λR/z (3)

where λC and λR , respectively, are known as autocorrelation [10, 11] and autoresponse
exponents [12]. This description applies to many simple magnets quenched to a temperature
T � Tc as is well known; see [2, 3, 5]4. On the other hand, for glasses quenched to below
the glass transition temperature, a slow crossover between an algebraic growth law at short
times and a slower (logarithmic) growth at larger times appears to give a better description of
the data; see [8] and references therein. Recently, evidence was found that for spin glasses
quenched to their critical temperature T = Tc a simple scaling of the two-time observables
compatible with an algebraic growth law applies [13].

In recent years, from the study of ageing in simple magnets it has been proposed that
global dynamical scaling might be extended to a local scale invariance [14, 15]. One of the
simplest predictions of that theory is the explicit form of the two-time autoresponse function.
It reads5

R(t, s) = s−1−a fR(t, s), fR(y) = f0 y1+a′−λR/z(y − 1)−1−a′
(4)

where a′ is a new independent exponent and f0 is a normalization constant. The independent
existence of the exponent a′ was recognized recently [17] for z = 2 and we shall extend that
argument to arbitrary z in appendix A. Previous derivations of fR(y) [14, 15] had assumed
a = a′ from the outset. The only known example with distinct exponents a �= a′ was the 1D
Glauber–Ising model at temperature T = 0 and with initial power-law correlations of the form
〈σiσ j〉 ∼ |i − j |−ν with ν � 0. The exact solution for R(t, s) [18–20] is of the form (4) and
one can read off a = 0, a′ = − 1

2 and λR = 1 [17]. In appendix B, we give a second example
and show that the treatment of phase ordering in d spatial dimensions at zero temperature in
the spirit of the OJK approximation [21, 22] leads to

aOJK = d − 1

2
, a′

OJK = d − 2

2
, λR,OJK = d

2
. (5)

The same scaling function and hence (5) is also found from the Gaussian approximation to
phase ordering kinetics [23]6.

4 Exceptions occur for example in the 2D XY model with a fully disordered initial state.
5 Technically, this requires that the order parameter is a quasi-primary field under local scale transformations [14].
This concept is the analogue of one used in conformal field theory [16].
6 We observe that in both examples a = a′ + 1

2 but it is still open to what extent this might be a general relationship.
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Equation (4) with a = a′ is perfectly reproduced in simple magnets undergoing coarsening
after a quench to T < Tc, most notably the 2D/3D Glauber–Ising model [15, 24], the 3D XY
model [25] and in several exactly solvable systems [14, 27, 17]7. For critical quenches with
T = Tc, the agreement between numerical data and (4) with a = a′ is almost perfect in the
2D/3D Ising and XY models [15, 27, 25, 28] and the 1D contact process [29] and is exact in
several exactly solvable models with z = 2 [14, 12, 17]. On the other hand, a second-order
ε-expansion calculation from renormalized field theory gives a small but systematic deviation
with respect to equation (4) [9, 30].

Of course it would be interesting to see whether a scaling description or even an extension
to local scale invariance might be applicable to glassy systems as well. Such a comparison
may be far from straightforward, however. Indeed, a possible scaling behaviour of two-
time correlators C(t, s) and integrated responses

∫

du R(t, u) has been discussed for a long
time, both theoretically and experimentally, see [1, 3, 6, 4, 31, 8], and debates have arisen
over several central issues of which we mention a few. First, for glasses quenched to
below their glass temperature, it is not entirely clear whether the growth law for L(t) is
algebraic or logarithmic [32]. Second, even if an asymptotic power-law scaling is accepted,
there has been an intense debate on whether scaling occurs according to the so-called ‘full
ageing’ scenario, that is in terms of the scaling variable y = t/s (possibly with small
logarithmic corrections) [33],or whether a ‘subageing’ scenario applies,with a scaling variable
ξ := [t1−µ − s1−µ]/(1 −µ), where µ is a free parameter [31]. The usual power-law scaling is
recovered in the µ → 1 limit, but in many experiments the data are fitted with values of µ as
low as ≈0.8–0.9. It has been suggested recently [34] that values of µ < 1 merely result from
a quench to below the glass transition which is not yet sufficiently rapid, but the repetition
of that experiment on other substances has not yet led to unambiguous conclusions [31].
Third, it is no longer even obvious that the commonly studied spin glass models really mimic
the experimentally studied materials sufficiently well (in spite of well-established qualitative
similarities [35]): recent simulations on 3D/4D Ising and Heisenberg spin glasses provide
evidence for cumulative ageing and rejuvenation phenomena in temperature cycling which are
not observed in real spin glass materials [36].

In view of these many difficulties, it might be simpler to consider the behaviour of
glassy systems from a different point of view. One rather works with a time-dependent
(oscillating) magnetic field and studies simultaneously the dependence on time and on the
imposed oscillation angular frequency ω. For a harmonic magnetic field, it is common to
consider the real and the imaginary part of the magnetic susceptibility

χ ′(ω, t) =
∫ t

0
du R(t, u) cos(ω(t − u))

χ ′′(ω, t) =
∫ t

0
du R(t, u) sin(ω(t − u))

(6)

where R(t, s) is the linear response discussed above. In this setting, 1/ω provides the second
timescale, the natural scaling variable is y = ωt and the scaling regime should be reached in the
limitω → 0 and t → ∞. In many experiments and simulations, one averages over at least one
period of the oscillating field; see e.g. [35]. Then in a great variety of glass-forming substances
quenched to below or to near to their glass transition point one observes good but not always
perfect evidence for an ωt-scaling behaviour of the following form for the period-averaged

7 A further extension of local scale invariance with z = 2 in d spatial dimensions to a new type of conformal invariance
in d + 2 dimensions yields a prediction of C(t, s) which is in agreement with numerical data in the 2D Glauber–Ising
model [26].
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dissipative (imaginary) part [32, 37]:

χ ′′(ω, t) = χ ′′
st(ω) + χ ′′

age(ω, t), χ ′′
age(ω, t) 
 A′′

age(ωt)−b′′
(7)

where χ ′′
st is thought of as a ‘stationary’ contribution while the ageing behaviour is described

by χ ′′
age. The amplitude A′′

age and the exponent b′′ are obtained from fits to the experimental
data but there does not seem to exist a relationship with the exponents a, a′, b, λC,R in the
literature.

Similar scaling forms have been proposed for the dispersive (real) part χ ′, but in practice
the imaginary part is usually easier to measure. It is usually thought that b′ = b′′.

In this paper, we shall try and see whether a relationship between the exponents b′′ and
b′ of the alternating susceptibilities (6) and the other nonequilibrium exponents arising in the
two-time observables can be found. Assuming the validity of local scale invariance for the
relatively large values of z (usually, z ≈ 5–7 [8]) found in many studies of spin glasses and
hence the explicit form (4) for the autoresponse function8, we shall show that for large times

χ ′′(ω, t) = χ ′′
1 (ω) + ωaχ ′′

2 (ωt) + O(t−λR/z)

χ ′(ω, t) = χ ′
1(ω) + ωaχ ′

2(ωt) + O(t−λR/z)
(8)

and we shall calculate the scaling functions χ ′′
2 and χ ′

2 explicitly in section 2. For the
asymptotics of these scaling functions we expect χ ′

2(y) ∼ y−b′
and χ ′′

2 (y) ∼ y−b′′
for y � 1

and obtain the relation

b′ = b′′ = a − a′. (9)

This should be compared to the experimentally found scaling (7) of χ ′′
age(ωt) and similarly

for χ ′
age(ωt). In section 3 we compare these results with Monte Carlo data from the 3D Ising

spin glass with a binary distribution of the couplings and discuss to what extent the scaling
relations (9) and the explicit scaling functions agree with existing experimental data. We
conclude in section 4. In appendix A we derive equation (4) from (an extension of) local scale
invariance and in appendix B we revisit the OJK approximation of coarsening kinetics and
derive (5).

2. Scaling of the alternating susceptibility

We now analyse the frequency-dependent scaling of the alternating susceptibility. For
notational simplicity, we concentrate first on χ ′′(ω, t) as given by equation (6). In order to
make the scaling behaviour explicit, we must convert this into a more convenient form which
can be done as follows [38]. We observe that the time difference τ = t − u plays a central
role since depending on its value either an equilibrium behaviour or else an ageing behaviour
is obtained. Specifically, it can be shown [39] that there is a timescale tp ∼ tζ with 0 < ζ < 1
on which the transition between the two regimes occurs such that R(t, s) 
 Req(t − s) for
t − s � tp and R(t, s) = s−1−a fR(t/s) as given in equation (4) for t − s � tp.9 In addition,
one measures for u ≈ t the response with respect to a change in the initial conditions and then
instead of (4) one expects R ≈ Rini(t) ∼ t−λR/z [2]. We must therefore introduce a further
timescale tε such that t − tε = O(1). Changing variables and then splitting the integral into
three terms corresponding to these three regimes, we have

8 Our recent study of the critical 3D/4D Ising spin glass [13] showed that the form of the measured thermoremanent
magnetization ρ(t, s) = ∫ s

0 du R(t, u) agrees with the prediction of local scale invariance for t/s � 20, which is also
in the sector encountered in ωt-scaling.
9 Explicitly, ζ = 4/(d + 2) in the d-dimensional spherical model [39].
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χ ′′(ω, t) =
∫ t

0
dτ R(t, t − τ ) sinωτ

=
∫ tp

0
dτ R(t, t − τ ) sinωτ +

∫ tε

tp

dτ R(t, t − τ ) sinωτ

+
∫ t

tε

dτ R(t, t − τ ) sinωτ



∫ tp

0
dτ Req(τ ) sinωτ + t−a

∫ tε/t

tp/t
dv fR

(
1

1 − v

)
sinωtv

(1 − v)1+a

+ t−λR/z
∫ t

tε

dτ c0 sinωτ

= χ ′′
1 (ω) + t−a

∫ 1

0
dv fR

(
1

1 − v

)
sinωtv

(1 − v)1+a
+ O

(

t−λR/z
)

. (10)

In the third line, we used the asymptotic forms of R(t, s) as described above. This means that
the crossover between the equilibrium and the ageing regimes is assumed to be very rapid. In
the last line, we restricted ourselves to the long-time limit t → ∞. Here, the function χ ′′

1 (ω)

merely depends on the equilibrium form of the linear response Req(t, s).
In this way (and analogously for χ ′) the scaling form (8) is obtained.

This derivation also shows that the often-found stationary term in the integrated
response [3, 40, 4, 31, 32, 8, 41, 34, 37] does not require the separation of a similar ‘stationary’
part in the response function R(t, s) itself.

We now analyse the second term in the above expression forχ ′′. Using the explicit form (4)
for the scaling function fR , we have

χ ′′(ω, t) = χ ′′
1 (ω) + f0t−a S + O(t−λR/z) (11)

where expansion of the sine followed by termwise integration gives

S :=
∫ 1

0
dv (1 − v)−1−a+λR/zv−1−a′

sin(ωtv)

=
∞∑

n=0

(−1)n

(2n + 1)!
B

(

2n + 1 − a′,
λR

z
− a

)

(ωt)2n+1

= B

(

1 − a′,
λR

z
− a

)

ωt

× 2 F3

(
1 − a′

2
,

2 − a′

2
; 3

2
,

1 − a − a′

2
+
λR

2z
,

2 − a − a′

2
+
λR

2z
; −ω

2t2

4

)

(12)

where 2 F3 is a hypergeometric function,

B(z, w) = (z)(w)

(z +w)
=

∫ 1

0
du uz−1(1 − u)w−1 (13)

is Euler’s beta function and the identity (2z) = 22z−1(z)(z + 1/2)/
√
π was also used.

We proceed to extract the leading behaviour for large values of the scaling variable y = ωt .
Recall first the asymptotic expansion for x → +∞ [42]:

2 F3(a, b; c, d, e; −x) 

[

Ax−a + Bx−b + Cx�/2 cos

(

2
√

x +
π

2
�

)]

(1 + O(x−1)) (14)
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with � = a + b − c − d − e + 1
2 and where the constants A, B,C are given by

A = (c)(d)(e)

(b)

(b − a)

(c − a)(d − a)(e − a)

B = (c)(d)(e)

(a)

(a − b)

(c − b)(d − b)(e − b)

C = (c)(d)(e)√
π (a)(b)

.

(15)

Inserting this into the expression for S, we find

S 
 Ā (ωt)a
′−a + B̄ (ωt)a

′−a−1 + C̄ (ωt)−λR/z sin
(

ωt +
π

2
(a − λR/z)

)

(16)

where the constants Ā, B̄, C̄ are proportional to A, B,C . The second term in (16) is always
non-leading. The other two terms, however, will determine the functional form of the scaling
function for y = ωt sufficiently large. The treatment of χ ′ is analogous.

We can summarize the content of this section by listing the scaling functions which occur
in (8), together with their leading behaviour as y → ∞:

χ ′′
2 (y) = f0 B

(

1 − a′,
λR

z
− a

)

y1−a

× 2 F3

(
1 − a′

2
,

2 − a′

2
; 3

2
,

1 − a − a′

2
+
λR

2z
,

2 − a − a′

2
+
λR

2z
; − y2

4

)


 f0
π

2

[

cos

(
πa′

2

)

(1 + a′)
]−1

ya′−a

+ f0

(
λR

z
− a

)

y−λR/z sin

(

y +
π

2
[a − λR/z]

)

(17)

χ ′
2(y) = f0 B

(

−a′,
λR

z
− a

)

y−a

× 2 F3

(−a′

2
,

1 − a′

2
; 1

2
,
−a − a′

2
+
λR

2z
,

1 − a − a′

2
+
λR

2z
; − y2

4

)


 − f0
π

2

[

sin

(
πa′

2

)

(1 + a′)
]−1

ya′−a

+ f0

(
λR

z
− a

)

y−λR/z cos

(

y +
π

2
[a − λR/z]

)

. (18)

We see that there appear terms which decrease monotonically with y but that there are
also oscillating terms. They are described by different exponents and must be extracted by a
different experimental set-up. The oscillating terms follow the oscillations of the external field
and the decrease of the oscillation amplitude gives direct access to the exponent λR/z. On the
other hand, in many experiments the data are averaged over one or several periods of the external
field. For y sufficiently large, the contribution of the oscillating term in equations (17), (18)
vanishes after averaging and then only a simple algebraic component remains, which permits
one to extract the exponent a − a′. For period-averaged data or else if λR/z � a − a′, the
leading behaviour for large arguments is

χ ′
2(y) ∼ χ ′′

2 (y) ∼ ya′−a (19)

and the scaling relations (9) follow.
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3. Tests

3.1. Numerical simulations

We now compare the theory of the alternating susceptibility developed in the previous section
with numerical simulations performed on the critical three-dimensional Ising spin glass. The
Hamiltonian of the model is given by

H = −
∑

(i,j)

Ji,jσiσj (20)

where the nearest-neighbour couplings Ji,j are random variables taken from a binary
distribution, i.e. Ji,j = ±1 with equal probability. The classical Ising spins σi = ±1
characterize the local magnetization at the sites i of a simple cubic lattice. In the past, numerical
studies [43, 44] investigated the static critical properties of this model which undergoes a
continuous phase transition at the temperature Tc ≈ 1.19 (setting kB = 1). Recently, we
studied the ageing behaviour of this critical spin glass [13]. There we found clear evidence of
a power-law scaling in the two-time correlation and integrated response functions. Here we
shall need the exponent estimates a = 0.060(4) and λR/z = 0.38(2) obtained from a scaling
analysis of the thermoremanent magnetization.

In order to study the alternating susceptibility far from equilibrium we prepared the
system in an uncorrelated initial state (corresponding to an infinite initial temperature) before
quenching it to the critical point at time t = 0. At the same time an external oscillating
magnetic field

h(t) = h0 cosωt (21)

was switched on, with its amplitude fixed at h0 = 0.05 which is well inside the linear response
regime. We consider different values of the angular frequencyω = 2π/p with p ranging from
50 to 1600. Typically, systems containing 503 spins were simulated.

Numerically, the in-phase and the out-of-phase susceptibilities are given by the
expressions [45]

χ ′′(ω, t) = m(t) sin ωt

χ ′(ω, t) = m(t) cosωt

with m(t) = ∑

i σi(t). In order to access the scaling parts of χ ′′ and of χ ′, we must first
subtract the equilibrium parts χ ′′

1 and χ ′
1. We therefore carried out longer runs where we let the

system equilibrate for typically a few tens of thousands of time steps before switching on the
oscillating field. When no changes in the amplitudes of the alternating susceptibilities were
observed, we identified these data with the equilibrium parts χ ′′

1 and χ ′
1. The ageing parts of

χ ′′ and of χ ′ discussed in the following result from averaging over 2500 different runs with
different couplings, different initial states and different realizations of the thermal noise.

In figures 1 and 2 we test the expected scaling behaviour of the ageing part; see equation (7):

χ ′′
2 = χ ′′

2 (ωt) and χ ′
2 = χ ′

2(ωt). (22)

For the larger values of p, corresponding to the smaller values of ω, we observe a very good
data collapse for both quantities, which furnishes clear evidence in favour of a power-law
scaling at T = Tc. Here we used the value a = 0.060(4) determined previously from the
decay of the thermoremanent magnetization [13]. For smaller values of p, the collapse is less
good, which presumably means that for the corresponding values of ω the dynamical scaling
regime is not yet reached.
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0 20 40 60ωt
– 0.003

– 0.001

0.001

0.003

0.005

0.007

χ’
’ 2

(ω
t)

p=1600
p=800
p=400

Figure 1. Scaling of the dissipative part χ ′′
2 (ωt) of the alternating susceptibility as a function of

the scaling variable ωt for different angular frequencies ω = 2π/p with p = 1600, 800 and 400.
The full curve is the theoretical prediction (17) with f0 = 0.002 and a′ = −0.70 but it has also
been shifted horizontally by y → y +�y, with�y = −0.45; see the text. Statistical error bars are
smaller than the symbol sizes.

0 20 40 60ωt
– 0.004

– 0.002

0

0.002

0.004

0.006

0.008

χ’
2
(ω

t)

p=1600
p=800
p=400

Figure 2. The same as figure 1, but now for the dispersive part χ ′
2(ωt). The full curve is the shifted

theoretical prediction (18) with f0 = 0.002 and a′ = −0.70.

The data shown in these two figures can in principle be compared directly with the
analytical predictions (17) and (18). We point out, however, that the positions of maxima
of χ ′′

2 and χ ′
2 are shifted by the amount �y ≈ −0.45 when compared with the positions

obtained in the analytical treatment of the previous section. The origin of this small shift is
not completely clear to us. It is possible, however, that the crossover between the equilibrium
and the ageing regimes is not almost instantaneous in contrast to what we assumed in the
derivation of equation (10). In any case, we shifted the scaling variable in the analytical curves
correspondingly, in order to make a comparison between analytical prediction and numerical
data possible.
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Table 1. Measured values of the exponents b′′ and b′ in several glassy materials, obtained using
the scaling form (7). Here Tg stands for the glass transition temperature and T is the temperature
where the data were taken. For Fe0.5Mn0.5TiO3 and CdCr1.7In0.3S4 the relation b′ = b′′ was
assumed.

Material Tg (K) T (K) b′′ b′ References

Cu0.5Co0.5Cl2–FeCl3 3.92(11) 3.25 0.01(4) 0.08(3) [37] Ising spin glass
–GBIC 3.5 0.017(32) 0.05(2)

3.75 0.16(3) 0.20(2)
3.85 0.15(3)
3.95 0.16(4) 0.20(2)

Fe0.5Mn0.5TiO3 20.7 15 0.14(3) [49, 48] Ising spin glass
19 0.14(3)

CdCr1.7In0.3S4 16.7 12 0.18(3) [49, 48] Heisenberg spin glass
14 0.18(3)

CdCr2x In2−2x S4 x = 0.95 70 8 0.2 [51, 48] Disordered ferromagnet
67 0.2

x = 0.90 50 42 0.20 [47, 48]
Pb(Mg1/3Nb2/3)O3 ∼220 �220 0.17 [40] Relaxor ferroelectric

As both a and λR/z are known from our earlier investigation [13] the only free parameters
in this comparison are the amplitude f0 and the exponent a′. Our final estimates are

a′ = −0.70(3), f0 = 0.002 03(1) (23)

and the fit is compared to the data in the figures. These values (23) of the parameters describe
consistently both χ ′′

2 and χ ′
2. Although some discrepancies are observed for small values of

y = ωt , the overall agreement between the simulation and the shifted theoretical prediction is
very good. The numerical data therefore support the scaling approach presented in the previous
section.

3.2. Comparison with experiments

We now turn to a discussion of existing experimental results on the scaling of the alternating
susceptibility.

A detailed discussion of a possible scaling of the alternating susceptibility was presented
by Suzuki and Suzuki for the short-ranged Ising spin glass Cu0.5Co0.5Cl2–FeCl3 graphite
bi-intercalation compound [37]. After a rapid quench to below the glass temperature
Tg = 3.92(11) K, they measure χ ′′(ω, t) for fixed ω and find that their (period-averaged)
data are well fitted by the power-law

χ ′′(ω, t) = χ ′′
0 (ω) + A′′(ω)t−b′′

. (24)

While the fitted exponent b′′ depends only slightly on ω, they further show evidence for a
power-law A′′(ω) = A′′

0ω
−µ′′

and find that ‘ . . . the value ofµ′′ is almost the same as that
of b′′’ [37]. In this way, they arrive at the ωt-scaling form

χ ′′(ω, t) = χ ′′
0 (ω) + A′′

0 (ωt)−b′′
(25)

and a similar form for χ ′(ω, t) where ‘. . . b′ and b′′ are of the same order at the same
temperature’ [37]. Experimentally measured values of the exponent b′′ (and also b′) of some
materials are collected in table 1. We now compare the experimental results of Suzuki and
Suzuki [37] with the theoretical scaling form (8). First, the experimental evidence for a pure
ωt-scaling indicates that the exponent a must indeed be very small. Second, when considering
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the leading behaviour for y = ωt large (their data go up to y � 106 [37]) and recalling that the
experimental data are averaged over at least one period of the external field, we can read off

b′′ = a − a′, µ′′ = −a′ (26)

and the observed [37] near equality b′′ ≈ µ′′ is again consistent with a being negligibly
small. Third, the available data are consistent with the theoretically required relation b′ = b′′.
Fourth, the reason for the experimentally observed sudden jump in b′ and b′′ for smaller T is
not yet understood but we mention that a similar phenomenon also occurs in certain relaxor
ferroelectrics [40, 46].

Similar values of b′′ were observed for several other materials, quite independently of the
precise physical nature as can be seen from table 1, but the errors are still too large to permit
a discussion of the universality of the exponents. However, the experimental data are for
many of these systems at least as well described by a logarithmic scaling as expected from the
droplet theory [48, 32, 49]. Furthermore, in several systems strong deviations from a simple
ωt-scaling were also found; see [46]. Finally, we mention that in systems like β-hydroquinol-
clathrate [41] or even simple liquids like glycerol [50] a power-law dependence of the form
χ ′′

age ∼ t−a or χ ′
age ∼ t−a was observed. All in all, it is not yet completely understood what

precise conditions are needed such that a clear power-law scaling in ωt can be observed.
Lastly, we see that the value b′′ 
 0.7 obtained from the critical 3D Ising spin glass with

binary disorder is very far from the values b′′ ≈ 0.1–0.2 found experimentally.

4. Conclusions and discussion

The objective of this work has been to investigate to what extent the ageing behaviour of
the dispersive and dissipative parts of the alternating susceptibility in glassy systems may be
described in terms of some simple ideas borrowed from the ageing of simple magnets without
disorder. These are:

(i) The clear separation of the stationary and the ageing regimes, which goes into the derivation
of equation (10).

(ii) The hypothesis of a single essential length scale L(t) ∼ t1/z growing algebraically in
time.

(iii) The extension of this dynamical scaling to a local scale invariance which leads to the
simple form of equation (4) for the two-time response function R(t, s).

Taking these assumptions as a working hypothesis, our results are as follows:

(i) The often-studied simple ωt-scaling (7) in χ ′′ and χ ′ should be slightly generalized to the
scaling forms (8) or equivalently

χ ′′(ω, t) = χ ′′
1 (ω) + t−a χ̄ ′′

2 (ωt) with χ̄ ′′
2 (y) = yaχ ′′

2 (y) (27)

and similarly for χ ′. The smallness of the exponent a makes it conceivable that the slight
‘subageing’ found in many experiments might be taken into account this way10. Tests of
this idea on real materials would be welcome.

(ii) The exponents b′ and b′′ defined from χ ′
2(y) ∼ y−b′

and χ ′′
2 (y) ∼ y−b′′

satisfy the scaling
relation

b′ = b′′ = a − a′ (28)

10 Working with (27) rather than with (8) has the advantage that for y � 1 the first term in the asymptotic expansion
only depends on the exponent a′, while the second one only depends on a − λR/z.
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which hence relates exponents found in an oscillating field to those describing the two-time
response R(t, s). Since a′ appears to be a new, independent exponent, this suggests that the
exponent b′ = b′′ should be independent of the exponents a, b, λC/z, λR/z habitually used
in describing ageing. This question could be addressed, independently of the hypothesis
of local scale invariance and the form (4), through field theory methods as developed
in [52].

(iii) When testing the explicit dispersive and dissipative scaling functions (17) and (18) on
the 3D critical Ising spin glass with binary disorder, we found that the form of both is
reproduced by the data for the following exponents:

a = 0.060(4), a′ = −0.70(3),
λR

z
= 0.38(2) (29)

(and with a normalization constant f0 
 0.002) where we took over the values of a and
λR/z from our earlier analysis of R(t, s) in this model [13]. We stress that this agreement
is only found if the curves (17) and (18) are shifted according to y → y + �y by a
constant �y 
 −0.45. Even then, for small values of y the simulated scaling functions
show a small but systematic deviation from the theoretical prediction which remains to be
understood.
The origin of this shift is unknown to us, but it might be due to a rather slow crossover
between the stationary and the ageing regimes which is not captured by equation (10).
Understanding this point is an important open problem.
We think that it is remarkable that the ageing dynamics of a system as complicated as
a critical spin glass can be captured by our relatively simple hypothesis of a dynamical
symmetry.

(iv) The value b′′ 
 0.7 that we found for the 3D Ising spin glass (with binary disorder) is
far from the values obtained in experiments; see table 1.11 If the present result were to
be confirmed, it might furnish a further hint towards a fundamental difference between
simple spin glass models and experimentally realized glassy systems [36].
On the other hand, the theoretically predicted relation b′ = b′′ is fully consistent with the
available experimental results.
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Appendix A. The autoresponse function and extended local scale invariance

Local scale transformations are extensions of the dynamical scale transformation r �→ br,
t �→ bzt , of space–time towards variable rescaling factors b = b(t, r) such that conformal
transformation in time t �→ (αt + β)/(γ t + δ) with αδ − βγ = 1 is maintained [14]. For any
given value of z, such infinitesimal transformations have been explicitly constructed and shown
to furnish a dynamical symmetry of the generalized diffusion equation

(

∂t + ∂ z
r

)

ψ(t, r) = 0.
Here we are interested in applications to ageing behaviour of the autoresponse function

R(t, s) = δ〈φ(t, r)〉
δh(s, r)

∣
∣
∣
∣
h=0

= 〈φ(t, r)φ̃(s, r)〉 (A.1)

11 Our previous investigation of the thermoremanent magnetization [13] did not permit us to determine the value of a′.
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where φ is the order parameter, h the conjugate magnetic field and φ̃ the associate response
field in the context of the Martin–Siggia–Rose theory; see e.g. [53]. Therefore, we have to
restrict consideration to the subalgebra with time translations excluded [14, 15]. Since space
translations are included in the set of local scale transformations, the scaling of R(t, s) will be
entirely given in terms of merely two generators which we write as

X0 = −t∂t − x

z
, X1 = −t2∂t − 2

z
(x + ξ) t (A.2)

where x is the scaling dimension of the field on which the generators Xn act. We have
observed earlier [17] for the special case z = 2 that a further constant ξ can be introduced
without changing the commutator relations of the subalgebra of local scale invariance under
consideration and now extend this to arbitrary values of z. Previous treatments of the question
had admitted ξ = ξ̃ = 0 from the outset. The covariance of R(t, s) is now expressed as
usual [14, 15]:

X0 R =
(

−t∂t − s∂s − x

z
− x̃

z

)

R(t, s) = 0

X1 R =
(

−t2∂t − s2∂s − 2

z
(x + ξ) t − 2

z
(x̃ + ξ̃ )s

)

R(t, s) = 0

(A.3)

where x̃ and ξ̃ refer to the response field φ̃. To solve these, change the variables into u = t − s
and v = t/s. Then, with R(t, s) = R̄(u, v)

(

u∂u +
x + x̃

z

)

R̄(u, v) = 0

u

(

v∂v +
v

v − 1

x − x̃ + 2ξ

z
+

1

v − 1

x̃ − x + 2ξ̃

z

)

R̄(u, v) = 0.

(A.4)

The solution to these is found in factorized form R̄(u, v) = f (u)g(v) and we find, after having
returned to the variables t and s,

R(t, s) = r0s−1−a

(
t

s
− 1

)−1−a′ (
t

s

)1+a′−λR/z

(A.5)

where

1 + a = x + x̃

z

1 + a′ = x + x̃ + 2ξ + 2ξ̃

z
λR = 2 (x + ξ)

(A.6)

which is the form (4) stated in the text. We finally observe that if ξ + ξ̃ = 0, we do indeed
recover a = a′.

Appendix B. On the Ohta–Jasnow–Kawasaki approximation

We briefly present the derivation of the scaling of the response function R(t, s) in a simple
analytically tractable scheme which is close in spirit to the Ohta–Jasnow–Kawasaki (OJK)
approximation. Following the ideas of Berthier et al [21] and of Mazenko [22] which in turn
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are based on a calculation by Bray [54], one considers the integrated response in the zero-field-
cooled protocol. When perturbing the system by a spatially random field h of magnitude h0,
the zero-field-cooled (ZFC) susceptibility reads [21, 54]

χ(t, s) = 〈h(r)φ(t, r)〉
h2

0



√

2

π

〈h(r)m(t, r)〉
h2

0

√〈m2〉 (B.1)

where φ is the order parameter and it is assumed that for late times, one can make the
approximation φ ∼ sgn(m). At zero temperature, the auxiliary field m should satisfy the
equation of motion

∂m

∂ t
= ∇2m − nanb∇a∇bm + h|∇m|. (B.2)

In the spirit of the OJK approximation, one makes [54, 2] the simplifications nanb → δab/d
(circular average) and |∇m| → 〈(∇m)2〉1/2. The equation of motion then becomes [21, 54]
∂t m = D∇2m + h〈(∇m)2〉1/2 with D = (d − 1)/d and, assuming the fields m and h to be
Gaussian, it is found that [21, equations (19), (20)]

χ(t, s) =
∫ t

s
du

(Dt)d/4

(Du)(d+2)/4

∫

Rd

dk e−k2 D(t−u) (B.3)

which is the starting point of our analysis.
Performing the integration in k-space, one obtains [22]

χ(t, s) = cste.
∫ t

s
du u−(d+1)/2

(
t

u

)d/4 (
t

u
− 1

)−d/2
!=

∫ t

s
du R(t, u). (B.4)

This integral becomes singular near the upper limit u ≈ t and we shall reconsider this below.
Before we shall do this, we read off the autoresponse function

R(t, u) = u−(d+1)/2 fOJK(t/u), fOJK(y) = f0 yd/4(y − 1)−d/2 (B.5)

from which we easily recover, using equation (4), the values of the exponents a, a′ and λR

in the OJK approximation (where z = 2) as stated in equation (5). Equation (B.5) is also
recovered in the Gaussian theory of phase ordering [23].

A different conclusion was reached by Berthier et al [21] although they started from the
same point, equation (B.3). They quote χ(t, s) ∼ s−1/2 F(t/s) for d > 2 which would mean
a = 1/2, provided of course that the naive scaling law χ(t, s) = s−a fχ (t/s) could be used.
We must therefore reconsider the singularity in equation (B.4) for χ(t, s). Following [21, 22],
one introduces a cut-off parameter �2 (which should be sent to zero at the end) and writes
instead of (B.3)

χ(t, s) =
∫ t

s
du

(Dt)d/4

(Du)(d+2)/4

∫

Rd

dk e−k2 D(t−u+�2). (B.6)

Performing first the integration over k and changing variables, this becomes, up to a
normalization constant,

χ(t, s) ∼ t (1−d)/2
∫ 1

s/t
dv v−(d+2)/4(1 − v +�2/t)−d/2 (B.7)

and we must analyse the contribution of the integrand near v ≈ 1. We decompose the domain
of integration:

∫ 1
s/t = ∫ 1−ε

s/t +
∫ 1

1−ε. In the first term, we let �2 → 0, and v 
 1 in the first
factor of the second term. Then, for d > 2

χ(t, s) 
 t−(d−1)/2
∫ 1−ε

s/t
dv v−(d+2)/4(1 − v)−d/2 + t−(d−1)/2

∫ 1

1−ε
dv (1 − v +�2/t)−d/2

= t−a F(s/t) + c1t−1/2(�2)1−d/2 + c2t−a(ε +�2/t)1−d/2

= s−1/2 · χ∞(t/s)−1/2 + s−a fχ (t/s) (B.8)
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where the value a = (d − 1)/2 was used. Here c1,2 and χ∞ are constants and F and fχ are
scaling functions. In this way, not only do we recover the leading term already found in [21],
but also we see that the contribution coming form formally integrating the scaling behaviour
of R(t, s) merely gives rise to a subleading correction. A similar argument can be applied to
the case d = 2 and produces logarithmic corrections.

Consequently, the mere observation of a scaling law for χ(t, s) in the scaling regime
t, s → ∞ with y = t/s fixed is not enough for reliably extracting the exponent a. Indeed,
the term expected from naive scaling χ(t, s) ∼ s−a merely arises as a short-time correction
to the leading long-time behaviour of χ(t, s). It has already been pointed out in the context
of the Ising model quenched to T < Tc that a similar dominant term not simply related to the
autoresponse exponent a occurs in the ZFC susceptibility for d � 3 [55]. The straightforward
use of χ(t, s) may hence lead to erroneous values of the exponent a and it is safer to avoid
using χ(t, s) altogether.
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[48] Dupuis V 2002 Thèse de Doctorat Paris XI Orsay
[49] Dupuis V, Vincent E, Bouchaud J-P, Hammann J, Ito A and Katori H A 2001 Phys. Rev. B 64 174204
[50] Leheny R L and Nagel S R 1998 Phys. Rev. B 57 5154
[51] Dupuis V, Vincent E, Alba M and Hammann J 2002 Eur. Phys. J. B 29 19
[52] Pimentel I R, Temesvari T and De Dominicis C 2002 Phys. Rev. B 65 224420

Temesvari T, De Dominicis C and Pimentel I R 2002 Eur. Phys. J. B 25 361
[53] Janssen H K 1992 From Phase Transitions to Chaos ed G Györgyi et al (Singapore: World Scientific) p 68
[54] Bray A J 1997 ICTP Summer School ‘Statistical Physics of Frustrated Systems’ (August 1997)

http://www.ictp.trieste.it/∼pub off/sci-abs/smr1003/index.html
[55] Henkel M, Paessens M and Pleimling M 2004 Phys. Rev. E 69 056109

http://www.ictp.trieste.it/~pub_off/sci-abs/smr1003/index.html

	1. Introduction
	2. Scaling of the alternating susceptibility
	3. Tests
	3.1. Numerical simulations
	3.2. Comparison with experiments

	4. Conclusions and discussion
	Acknowledgements
	Appendix A. The autoresponse function and extended local scale invariance
	Appendix B. On the Ohta--Jasnow--Kawasaki approximation
	References

